PWSID# NJ0110300 # Annual Drinking Water Quality Report Folsom Elementary School For the Year 2024, Results from the Calendar Year 2023 We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from a well at a depth of 100'. Our wells draw groundwater from the Cohansey Aquifer. The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.ni.us/dep/swap or by contacting NJDEP's Bureau of Safe Drinking Water at (609) 292-5550. You may also contact your public water system to obtain information regarding your water system's Source Water Assessment. This water system's source water susceptibility ratings and a list of potential contaminant sources is attached. We are pleased to report that our drinking water meets all federal and state safety requirements. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). EPA requires monitoring for over 80 drinking water contaminants. Those contaminants listed in the table are only contaminants detected in your water. TEST RESULTS Contaminant Units MC MCL Likely Source of Viol Level Contamination Detected of LG ation Y/N Measur ement Radioactive Contaminants 0 5 Erosion of natural Combined Radium-1/31/23 ND pCi/1 4/26/23 ND deposits 228 & 226 | Inorganic Contami Copper Result at 90 th Percentile | nants: | 8/1/23 1.5
10/11/23 1.12
Highest level
1.5
Range ND-1.5
9/14/23 .48
None of the 5
samples | ppm | 1.3 | AL=1.3 | Corrosion of household plumbing systems; erosion of | |--|---------|--|-----|------|--------|---| | | | exceeded the action level. | | j. | | natural deposits | | Nitrate (as
Nitrogen) | N | 1/31/23 2.1 | ppm | 10 | 10 | Runoff from fertilizer
use; leaching from
septic tanks, sewage;
erosion of natural
deposits | | Volatile Organic Co | ontamir | ants | | | | , | | PFOS Perfluorooctane Sulfonate | N | 2/16/23 ND
6/13/23 ND
9/21/23 .011
11/7/23 ND
Range ND011
Highest level
.011 | ppb | .013 | 0.013 | manufacture of
fluoropolymers. Were
once widely used in
many commercial and
industrial applications | | PFOA Perfluorooctanoic Acid | N | 2/16/23 ND
6/13/23 ND
9/21/23 .0043
11/7/23 ND
Range ND-
.0043
Highest level
.0043 | ppb | .014 | 0.014 | Used in the manufacture of fluoropolymers. Were once widely used in many commercial and industrial applications | | Secondary Contaminant | Level Detected | Units
of
Measur
ement | RUL | |-----------------------|----------------|--------------------------------|-----| | Sodium | 6/1/22 79.7 | ppm | 50 | #### Sodium: For healthy individuals the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the Recommended Upper Limit (RUL) may be of concern to individuals on a sodium restricted diet. #### What are PFOA and PFOS? Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are per- and polyfluoroalkyl substances (PFAS), previously referred to as perfluorinated compounds, or PFCs, that are man-made and used in industrial and commercial applications. PFOA was used as a processing aid in the manufacture of fluoropolymers used in non-stick cookware and other products, as well as other commercial and industrial uses based on its resistance to harsh chemicals and high temperatures. PFOS is used in metal plating and finishing as well as in various commercial products. PFOS was previously used as a major ingredient in aqueous film forming foams for firefighting and training, and PFOA and PFOS are found in consumer products such as stain resistant coatings for upholstery and carpets, water resistant outdoor clothing, and grease proof food packaging. Although the use of PFOA and PFOS has decreased substantially, contamination is expected to continue indefinitely because these substances are extremely persistent in the environment and are soluble and mobile in water. #### What does this mean? We have learned through our monitoring and testing that some contaminants have been detected. As you can see by the table, our system had no violations. We are proud that your drinking water meets or exceeds all Federal and State safety requirements. If you have any questions about this report or concerning your water utility, please contact Paul Casaccio our Licensed Water Operator at 609-390-3565. We want our valued customers to be informed about their water utility. Folsom Elementary School routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2023. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas projection, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can, also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. ## **DEFINITIONS** In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Non-Detects (ND) - laboratory analysis indicates that the constituent is not present. <u>Parts per million</u> (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water. <u>Action Level</u> - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. <u>Treatment Technique</u> (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. <u>Maximum Contaminant Level</u> - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal -The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Secondary Contaminant- Substances that do not have an impact on health. Secondary Contaminants affect aesthetic qualities such as odor, taste or appearance. Secondary standards are recommendations, not mandates. Recommended Upper Limit (RUL) – Recommended maximum concentration of secondary contaminants. These reflect aesthetic qualities such as odor, taste or appearance. RUL's are recommendations, not mandates. To ensure the continued quality of our water we treat it is several ways, sodium hydroxide for pH adjustment and corrosion control, an ion exchange filter for the removal of radioactive contaminants, and activated carbon filters for the removal of volatile organic contaminants. The ion exchange filter and activated carbon filters were activated 6/24/19. The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals and synthetic organic chemicals. Our system received monitoring waivers for asbestos and synthetic organic chemicals. Special considerations regarding children, pregnant women, nursing mothers, and others: Children may receive a slightly higher amount of a contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than do adults. For this reason, reproductive or developmental effects are used for calculating a drinking water standard if these effects occur at lower levels than other health effects of concern. If there is insufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, thus making the standard more stringent, to account for additional uncertainties regarding these effects. In the cases of lead and nitrate, effects on infants and children are the health endpoints upon which the standards are based. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Folsom Elementary School is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 second to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at http://www.epa.gov/safewater/lead. We at Folsom Elementary School work hard to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. Please call our office if you have questions. Folsom Elementary School 1357 Mays Landing Rd. Folsom, NJ 08037 609-561-8666 2/6/24 Table 2: Susceptibility Ratings for Folsom Boro Elementary School's Sources | Sources sources | . Pathogens | Nutrients | Pestlcides | Volatile
Organic
Compounds | Inorganics | Radionuclides | Radon | Disinfection
Byproduct
Precursors | |---------------------------|-------------|-----------|------------|----------------------------------|------------|---------------|--------|---| | | Rating | New Well
(Replacement) | L | М | M | Н | М | н | М | М | If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the <u>potential</u> for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. ## Which Sensitivity and Intensity Factors Determine a Source's Susceptibility? The susceptibility models determined source water susceptibility is based on the well or intake's location and sensitivity and intensity factors (also known as explanatory variables). An explanatory variable can be used to predict the presence of or the potential presence of a contaminant in ground water or surface water. Some explanatory variables are considered conceptual. A conceptual variable is one that has been shown in a previous scientific investigation to be related to, or is expected to have an effect on, the concentrations of a constituent. Conceptual variables that did not produce significant univariate statistical relations may however, produce a significant relation when used with other variables in multivariate statistical tests. The following page contains an Individual Explanatory Variable Inventory, which provides the values of each explanatory variable within your source water assessment area. This is not the entire potential contaminant source inventory for this system's source(s). If the variable value is shown as zero, then attributes or land activities are not present in the source water assessment area. If a value is not shown, this represents either unavailable data, or in the case of "Distance to" variables land activities of that type are not present in the source water assessment area. This information, used in conjunction with USGS's susceptibility rating scheme, calculates the susceptibility rating for each source to each contaminant category. If you are interested in USGS's rating schemes please refer to the "Contaminant Category Scoring System for Noncommunity Water Systems Appendix A – Attachment 2" available in the Noncommunity Source Water Assessment Report for Folsom Boro, Atlantic County or on the Source Water Assessment Program website at http://www.state.nj.us/dep/swap/. Following the Individual Explanatory Variable Inventory for your system is a source water assessment map illustrating the source water assessment areas for systems with in Folsom Boro. For more information please refer to the Noncommunity Source Water Assessment Report for Folsom Boro, Atlantic County, available on the Source Water Assessment Program website. You may also contact the Bureau of Safe Drinking Water at 609-292-5550.